Serveur d'exploration sur la grippe en Espagne

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Naturally Avian Influenza Virus-Infected Wild Birds Are More Likely to Test Positive for Mycobacterium spp. and Salmonella spp.

Identifieur interne : 000025 ( Main/Exploration ); précédent : 000024; suivant : 000026

Naturally Avian Influenza Virus-Infected Wild Birds Are More Likely to Test Positive for Mycobacterium spp. and Salmonella spp.

Auteurs : Olalla Torrontegi [Espagne] ; Vega Alvarez [Espagne] ; Ana Hurtado [Espagne] ; Iker A. Sevilla [Espagne] ; Ursula Höfle [Espagne] ; Marta Barral [États-Unis]

Source :

RBID : pubmed:31131569

Descripteurs français

English descriptors

Abstract

Wild birds often harbor infectious microorganisms. Some of these infectious microorganisms may present a risk to domestic animals and humans through spillover events. Detections of certain microorganisms have been shown to increase host susceptibility to infections by other microorganisms, leading to coinfections and altered host-to-host transmission patterns. However, little is known about the frequency of coinfections and its impact on wild bird populations. In order to verify whether avian influenza virus (AIV) natural infection in wild waterbirds was related to the excretion of other microorganisms, 73 AIV-positive samples (feces and cloacal swabs) were coupled with 73 AIV-negative samples of the same sampling characteristics and tested by real-time PCR specific for the following microorganisms: West Nile virus, avian avulavirus 1, Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis, Mycobacterium avium subspecies, Mycobacterium tuberculosis complex, and Mycobacterium spp. Concurrent detections were found in 47.9% (35/73) of the AIV-positive samples and in 23.3% (17/73) of the AIV-negative samples (P = 0.003). Mycobacterium spp. and Salmonella spp. were found to be significantly more prevalent among the AIV-positive samples than among the AIV-negative samples (42.9% vs. 22.8%; P = 0.024 and 15.2% vs. 0.0%; P = 0.0015, respectively). Prevalence of concurrent detections differed significantly among sampling years (P = 0.001), host families (P = 0.002), host species (P = 0.003), AIV subtypes (P = 0.003), and type of sample (P = 0.009). Multiple concurrent detections (more than one of the tested microorganisms excluding AIV) were found in 9.6% (7/73) of all the AIV-positive samples, accounting for 20% (7/35) of the concurrent detection cases. In contrast, in AIV-negative samples we never detected more than one of the selected microorganisms. These results show that AIV detection was associated with the detection of the monitored microorganisms. Further studies of a larger field sample set or under experimental conditions are necessary to infer causality in these trends.

DOI: 10.1637/11866-042518-Reg.1
PubMed: 31131569


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Naturally Avian Influenza Virus-Infected Wild Birds Are More Likely to Test Positive for
<i>Mycobacterium</i>
spp. and
<i>Salmonella</i>
spp.</title>
<author>
<name sortKey="Torrontegi, Olalla" sort="Torrontegi, Olalla" uniqKey="Torrontegi O" first="Olalla" last="Torrontegi">Olalla Torrontegi</name>
<affiliation wicri:level="2">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alvarez, Vega" sort="Alvarez, Vega" uniqKey="Alvarez V" first="Vega" last="Alvarez">Vega Alvarez</name>
<affiliation wicri:level="2">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hurtado, Ana" sort="Hurtado, Ana" uniqKey="Hurtado A" first="Ana" last="Hurtado">Ana Hurtado</name>
<affiliation wicri:level="2">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sevilla, Iker A" sort="Sevilla, Iker A" uniqKey="Sevilla I" first="Iker A" last="Sevilla">Iker A. Sevilla</name>
<affiliation wicri:level="2">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hofle, Ursula" sort="Hofle, Ursula" uniqKey="Hofle U" first="Ursula" last="Höfle">Ursula Höfle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 13005 Ciudad Real, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 13005 Ciudad Real</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Castille-La Manche</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Escuela de Ingenieros Agrónomos, Ronda de Calatrava, 13071 Ciudad Real, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Escuela de Ingenieros Agrónomos, Ronda de Calatrava, 13071 Ciudad Real</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Castille-La Manche</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barral, Marta" sort="Barral, Marta" uniqKey="Barral M" first="Marta" last="Barral">Marta Barral</name>
<affiliation wicri:level="1">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain, mbarral@neiker.eus.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain</wicri:regionArea>
<wicri:noRegion>Spain</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31131569</idno>
<idno type="pmid">31131569</idno>
<idno type="doi">10.1637/11866-042518-Reg.1</idno>
<idno type="wicri:Area/Main/Corpus">00016</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">00016</idno>
<idno type="wicri:Area/Main/Curation">000016</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000016</idno>
<idno type="wicri:Area/Main/Exploration">000016</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Naturally Avian Influenza Virus-Infected Wild Birds Are More Likely to Test Positive for
<i>Mycobacterium</i>
spp. and
<i>Salmonella</i>
spp.</title>
<author>
<name sortKey="Torrontegi, Olalla" sort="Torrontegi, Olalla" uniqKey="Torrontegi O" first="Olalla" last="Torrontegi">Olalla Torrontegi</name>
<affiliation wicri:level="2">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alvarez, Vega" sort="Alvarez, Vega" uniqKey="Alvarez V" first="Vega" last="Alvarez">Vega Alvarez</name>
<affiliation wicri:level="2">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hurtado, Ana" sort="Hurtado, Ana" uniqKey="Hurtado A" first="Ana" last="Hurtado">Ana Hurtado</name>
<affiliation wicri:level="2">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sevilla, Iker A" sort="Sevilla, Iker A" uniqKey="Sevilla I" first="Iker A" last="Sevilla">Iker A. Sevilla</name>
<affiliation wicri:level="2">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Pays basque</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hofle, Ursula" sort="Hofle, Ursula" uniqKey="Hofle U" first="Ursula" last="Höfle">Ursula Höfle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 13005 Ciudad Real, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 13005 Ciudad Real</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Castille-La Manche</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Escuela de Ingenieros Agrónomos, Ronda de Calatrava, 13071 Ciudad Real, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Escuela de Ingenieros Agrónomos, Ronda de Calatrava, 13071 Ciudad Real</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Castille-La Manche</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barral, Marta" sort="Barral, Marta" uniqKey="Barral M" first="Marta" last="Barral">Marta Barral</name>
<affiliation wicri:level="1">
<nlm:affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain, mbarral@neiker.eus.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain</wicri:regionArea>
<wicri:noRegion>Spain</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Avian diseases</title>
<idno type="eISSN">1938-4351</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Animals, Wild (MeSH)</term>
<term>Bird Diseases (epidemiology)</term>
<term>Bird Diseases (virology)</term>
<term>Charadriiformes (MeSH)</term>
<term>Cloaca (virology)</term>
<term>Ducks (MeSH)</term>
<term>Falconiformes (MeSH)</term>
<term>Feces (virology)</term>
<term>Influenza in Birds (virology)</term>
<term>Mycobacterium (isolation & purification)</term>
<term>Mycobacterium Infections (epidemiology)</term>
<term>Mycobacterium Infections (veterinary)</term>
<term>Mycobacterium Infections (virology)</term>
<term>Salmonella (isolation & purification)</term>
<term>Salmonella Infections, Animal (epidemiology)</term>
<term>Salmonella Infections, Animal (virology)</term>
<term>Spain (epidemiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Animaux sauvages (MeSH)</term>
<term>Canards (MeSH)</term>
<term>Charadriiformes (MeSH)</term>
<term>Cloaque (virologie)</term>
<term>Espagne (épidémiologie)</term>
<term>Falconiformes (MeSH)</term>
<term>Fèces (virologie)</term>
<term>Grippe chez les oiseaux (virologie)</term>
<term>Infections à Mycobacterium (médecine vétérinaire)</term>
<term>Infections à Mycobacterium (virologie)</term>
<term>Infections à Mycobacterium (épidémiologie)</term>
<term>Maladies des oiseaux (virologie)</term>
<term>Maladies des oiseaux (épidémiologie)</term>
<term>Mycobacterium (isolement et purification)</term>
<term>Salmonella (isolement et purification)</term>
<term>Salmonelloses animales (virologie)</term>
<term>Salmonelloses animales (épidémiologie)</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Spain</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Bird Diseases</term>
<term>Mycobacterium Infections</term>
<term>Salmonella Infections, Animal</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Mycobacterium</term>
<term>Salmonella</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Mycobacterium</term>
<term>Salmonella</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Infections à Mycobacterium</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Mycobacterium Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Cloaque</term>
<term>Fèces</term>
<term>Grippe chez les oiseaux</term>
<term>Infections à Mycobacterium</term>
<term>Maladies des oiseaux</term>
<term>Salmonelloses animales</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Bird Diseases</term>
<term>Cloaca</term>
<term>Feces</term>
<term>Influenza in Birds</term>
<term>Mycobacterium Infections</term>
<term>Salmonella Infections, Animal</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Espagne</term>
<term>Infections à Mycobacterium</term>
<term>Maladies des oiseaux</term>
<term>Salmonelloses animales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Wild</term>
<term>Charadriiformes</term>
<term>Ducks</term>
<term>Falconiformes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Animaux sauvages</term>
<term>Canards</term>
<term>Charadriiformes</term>
<term>Falconiformes</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Espagne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wild birds often harbor infectious microorganisms. Some of these infectious microorganisms may present a risk to domestic animals and humans through spillover events. Detections of certain microorganisms have been shown to increase host susceptibility to infections by other microorganisms, leading to coinfections and altered host-to-host transmission patterns. However, little is known about the frequency of coinfections and its impact on wild bird populations. In order to verify whether avian influenza virus (AIV) natural infection in wild waterbirds was related to the excretion of other microorganisms, 73 AIV-positive samples (feces and cloacal swabs) were coupled with 73 AIV-negative samples of the same sampling characteristics and tested by real-time PCR specific for the following microorganisms: West Nile virus, avian avulavirus 1,
<i>Salmonella</i>
spp.,
<i>Yersinia enterocolitica</i>
,
<i>Yersinia pseudotuberculosis</i>
,
<i>Mycobacterium avium</i>
subspecies,
<i>Mycobacterium tuberculosis</i>
complex, and
<i>Mycobacterium</i>
spp. Concurrent detections were found in 47.9% (35/73) of the AIV-positive samples and in 23.3% (17/73) of the AIV-negative samples (
<i>P</i>
= 0.003).
<i>Mycobacterium</i>
spp. and
<i>Salmonella</i>
spp. were found to be significantly more prevalent among the AIV-positive samples than among the AIV-negative samples (42.9%
<i>vs</i>
. 22.8%;
<i>P</i>
= 0.024 and 15.2%
<i>vs</i>
. 0.0%;
<i>P</i>
= 0.0015, respectively). Prevalence of concurrent detections differed significantly among sampling years (
<i>P</i>
= 0.001), host families (
<i>P</i>
= 0.002), host species (
<i>P</i>
= 0.003), AIV subtypes (
<i>P</i>
= 0.003), and type of sample (
<i>P</i>
= 0.009). Multiple concurrent detections (more than one of the tested microorganisms excluding AIV) were found in 9.6% (7/73) of all the AIV-positive samples, accounting for 20% (7/35) of the concurrent detection cases. In contrast, in AIV-negative samples we never detected more than one of the selected microorganisms. These results show that AIV detection was associated with the detection of the monitored microorganisms. Further studies of a larger field sample set or under experimental conditions are necessary to infer causality in these trends.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31131569</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1938-4351</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>sp1</Issue>
<PubDate>
<Year>2019</Year>
<Month>03</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Avian diseases</Title>
<ISOAbbreviation>Avian Dis.</ISOAbbreviation>
</Journal>
<ArticleTitle>Naturally Avian Influenza Virus-Infected Wild Birds Are More Likely to Test Positive for
<i>Mycobacterium</i>
spp. and
<i>Salmonella</i>
spp.</ArticleTitle>
<Pagination>
<MedlinePgn>131-137</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1637/11866-042518-Reg.1</ELocationID>
<Abstract>
<AbstractText>Wild birds often harbor infectious microorganisms. Some of these infectious microorganisms may present a risk to domestic animals and humans through spillover events. Detections of certain microorganisms have been shown to increase host susceptibility to infections by other microorganisms, leading to coinfections and altered host-to-host transmission patterns. However, little is known about the frequency of coinfections and its impact on wild bird populations. In order to verify whether avian influenza virus (AIV) natural infection in wild waterbirds was related to the excretion of other microorganisms, 73 AIV-positive samples (feces and cloacal swabs) were coupled with 73 AIV-negative samples of the same sampling characteristics and tested by real-time PCR specific for the following microorganisms: West Nile virus, avian avulavirus 1,
<i>Salmonella</i>
spp.,
<i>Yersinia enterocolitica</i>
,
<i>Yersinia pseudotuberculosis</i>
,
<i>Mycobacterium avium</i>
subspecies,
<i>Mycobacterium tuberculosis</i>
complex, and
<i>Mycobacterium</i>
spp. Concurrent detections were found in 47.9% (35/73) of the AIV-positive samples and in 23.3% (17/73) of the AIV-negative samples (
<i>P</i>
= 0.003).
<i>Mycobacterium</i>
spp. and
<i>Salmonella</i>
spp. were found to be significantly more prevalent among the AIV-positive samples than among the AIV-negative samples (42.9%
<i>vs</i>
. 22.8%;
<i>P</i>
= 0.024 and 15.2%
<i>vs</i>
. 0.0%;
<i>P</i>
= 0.0015, respectively). Prevalence of concurrent detections differed significantly among sampling years (
<i>P</i>
= 0.001), host families (
<i>P</i>
= 0.002), host species (
<i>P</i>
= 0.003), AIV subtypes (
<i>P</i>
= 0.003), and type of sample (
<i>P</i>
= 0.009). Multiple concurrent detections (more than one of the tested microorganisms excluding AIV) were found in 9.6% (7/73) of all the AIV-positive samples, accounting for 20% (7/35) of the concurrent detection cases. In contrast, in AIV-negative samples we never detected more than one of the selected microorganisms. These results show that AIV detection was associated with the detection of the monitored microorganisms. Further studies of a larger field sample set or under experimental conditions are necessary to infer causality in these trends.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Torrontegi</LastName>
<ForeName>Olalla</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alvarez</LastName>
<ForeName>Vega</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hurtado</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sevilla</LastName>
<ForeName>Iker A</ForeName>
<Initials>IA</Initials>
<AffiliationInfo>
<Affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Höfle</LastName>
<ForeName>Ursula</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 13005 Ciudad Real, Spain.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Escuela de Ingenieros Agrónomos, Ronda de Calatrava, 13071 Ciudad Real, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barral</LastName>
<ForeName>Marta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain, mbarral@neiker.eus.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Avian Dis</MedlineTA>
<NlmUniqueID>0370617</NlmUniqueID>
<ISSNLinking>0005-2086</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000835" MajorTopicYN="N">Animals, Wild</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001715" MajorTopicYN="N">Bird Diseases</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046091" MajorTopicYN="Y">Charadriiformes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002988" MajorTopicYN="N">Cloaca</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004372" MajorTopicYN="Y">Ducks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046093" MajorTopicYN="Y">Falconiformes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005243" MajorTopicYN="N">Feces</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005585" MajorTopicYN="N">Influenza in Birds</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009161" MajorTopicYN="N">Mycobacterium</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009164" MajorTopicYN="N">Mycobacterium Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012475" MajorTopicYN="N">Salmonella</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012481" MajorTopicYN="N">Salmonella Infections, Animal</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013030" MajorTopicYN="N" Type="Geographic">Spain</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherAbstract Type="Publisher" Language="spa">
<AbstractText>Las aves silvestres frecuentemente albergan microorganismos infecciosos. Algunos suponen un riesgo por su posible transmisión a animales domésticos o representar un problema de salud pública si son zoonóticos. Se ha relacionado la detección de algunos microorganismos microbianos con una mayor susceptibilidad del hospedador a la infección por otros, llevando a una coinfección y a una alteración de los patrones de transmisión entre hospedadores. Sin embargo, poco se sabe sobre la frecuencia y el impacto de estas coinfecciones en la epidemiologia de las enfermedades en las aves silvestres. Con el ánimo de determinar si una infección natural con el virus de la influenza aviar (VIA) en aves acuáticas se relaciona con la excreción de otros microorganismos, se seleccionaron 73 muestras positivas a VIA y un número igual de negativas de similares características y se sometieron a análisis por PRC a tiempo real para la detección de los siguientes agentes: virus del Nilo occidental, avulavirus aviar de tipo 1,
<i>Salmonella</i>
spp.,
<i>Yersinia enterocolitica</i>
,
<i>Yersinia pseudotuberculosis</i>
, subspecies de
<i>Mycobacterium avium</i>
, complejo
<i>Mycobacterium tuberculosis</i>
y
<i>Mycobacterium</i>
spp. Se detectaron otros agentes concurrentes en el 48% (35/73) de las muestras positivas a VIA frente al 23.3% (17/73) en las negativas (p=0.003). La prevalencia de
<i>Mycobacterium</i>
spp. y
<i>Salmonella</i>
spp. fue significativamente mayor entre las muestras positivas a VIA que entre las negativas (42.9%
<i>vs</i>
. 22.8%; p=0.024 y 15.2%
<i>vs</i>
. 0.0%; p=0.0015 respectivamente). La prevalencia de otros agentes difirió significativamente entre el año de recogida, la familia (p=0.002), la especie (p=0.003), los subtipos de VIA (p=0.003) y el tipo de muestra (p=0.009). Se detectaron múltiples microorganismos en el 9.6% (7/73) de las muestras positivas a VIA, lo que se correspondió con un 20% (7/35) de las detecciones concurrentes. Sin embargo en las muestras negativas a VIA no detectamos más de uno de los microorganismos estudiados. Estos resultados confirman que la detección de los agentes microbianos monitorizados se vio incrementada en presencia del VIA. Consideramos necesario la realización de estudios con un mayor número de muestras o en condiciones experimentales para inferir causalidad sobre estas tendencias.</AbstractText>
</OtherAbstract>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Mycobacterium spp.</Keyword>
<Keyword MajorTopicYN="Y">Salmonella spp.</Keyword>
<Keyword MajorTopicYN="Y">Yersinia spp</Keyword>
<Keyword MajorTopicYN="Y">avian avulavirus 1</Keyword>
<Keyword MajorTopicYN="Y">avian influenza</Keyword>
<Keyword MajorTopicYN="Y">concurrent detections</Keyword>
<Keyword MajorTopicYN="Y">wild birds</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31131569</ArticleId>
<ArticleId IdType="doi">10.1637/11866-042518-Reg.1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acevedo-Whitehouse, K., and A. L. J. Duffus. Effects of environmental change on wildlife health. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364: 3429–3438. 2009.</Citation>
</Reference>
<Reference>
<Citation>Arrausi-Subiza, M., X. Gerrikagoitia, V. Alvarez, J. C. Ibabe, and M. Barral. Prevalence of
<i>Yersinia enterocolitica</i>
and
<i>Yersinia pseudotuberculosis</i>
in wild boars in the Basque Country, northern Spain. Acta Vet. Scand. 58: 4. 2015</Citation>
</Reference>
<Reference>
<Citation>Azizpour, A., H. Goudarzi, M. Banani, A. Nouri, R. Momayez, M. H. Hablolvarid, M. Abdoshah, and P. Bijanzad. Evaluation of clinical signs, gross lesions and antibody response in experimental of indvidual and coinfection of H9N2 avian influenza and
<i>Ornithobacterium rhinotracheale</i>
in SPF chickens. Eur. J. Exp. Biol. 3: 503–507. 2013</Citation>
</Reference>
<Reference>
<Citation>Bancerz-Kisiel, A., A. Szczerba-Turek, K. Lipczynska, T. Stenzel, and W. Szweda. Bioserotypes and virulence markers of
<i>Yersinia enterocolitica</i>
strains isolated from mallards (
<i>Anas platyrhynchos</i>
) and pheasants (
<i>Phasianus colchicus</i>
). J. Food Prot. 75: 2219–2222. 2012</Citation>
</Reference>
<Reference>
<Citation>Barbour, E. K., F. A. Mastori, A. M. Abdel Nour, H. A. Shaib, L. S. Jaber, R. H. Yaghi, A. Sabra, F. T. Sleiman, R. K. Sawaya, A. Niedzwieck, I. T. Tayeb, Z. G. Kassaify, M. Rath, S. Harakeh, and K. E. Barbour. Standardisation of a new model of H9N2/
<i>Escherichia coli</i>
challenge in broilers in the Lebanon. Vet. Ital. 45: 317–322. 2009</Citation>
</Reference>
<Reference>
<Citation>Barbour, E. K., M. F. Saadé, A. M. A. Nour, G. Kayali, S. Kidess, R. B. Ghannam, S. Harakeh, and H. Shaib. Evaluation of essential oils in the treatment of broilers co-infected with multiple respiratory etiologic agents. Int. J. Appl. Res. Vet. Med. 9: 317–323. 2009</Citation>
</Reference>
<Reference>
<Citation>Breban, R., J. M. Drake, D. E. Stallknecht, and P. Rohani. The role of environmental transmission in recurrent avian influenza epidemics. PLoS Comput. Biol. 5: e1000346. 2009</Citation>
</Reference>
<Reference>
<Citation>Capua, I., and S. Marangon. The avian influenza epidemic in Italy, 1999–2000: a review. Avian Pathol. 29: 289–294. 2000</Citation>
</Reference>
<Reference>
<Citation>Cheung, P. P., Y. H. C. Leung, C. K. Chow, C. F. Ng, C. L. Tsang, Y. O. Wu, S. K. Ma, S. F. Sia, Y. Guan, and J. S. M. Peiris. Identifying the species-origin of faecal droppings used for avian influenza virus surveillance in wild-birds. J. Clin. Virol. 46: 90–93. 2009</Citation>
</Reference>
<Reference>
<Citation>Cornelius, J. M., N. Perfito, R. Zann, C. W. Breuner, and T. P. Hahn. Physiological trade-offs in self-maintenance: plumage molt and stress physiology in birds. J. Exp. Biol. 214: 2768–2777. 2011</Citation>
</Reference>
<Reference>
<Citation>Costa-Hurtado, M., C. L. Afonso, P. J. Miller, E. Shepherd, R. M. Cha, D. Smith, E. Spackman, D. R. Kapczynski, D. L. Suarez, D. E. Swayne, and M. J. Pantin-Jackwood. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens. Vet. Res. 46: 97. 2015</Citation>
</Reference>
<Reference>
<Citation>Deriu, E., G. M. Boxx, X. He, C. Pan, S. D. Benavidez, L. Cen, N. Rozengurt, W. Shi, and G. Cheng. Influenza virus affects intestinal microbiota and secondary
<i>Salmonella</i>
infection in the gut through type I interferons. PLoS Pathog. 12(5): e1005572. 2016</Citation>
</Reference>
<Reference>
<Citation>Diego, S., B. Claudia, and R. Wellman. Mycobacteriosis in wild birds: the potential risk of disseminating a little-known infectious disease. Rev. Salud Pública 11: 134–144. 2009</Citation>
</Reference>
<Reference>
<Citation>Drosten, C. Virus ecology: a gap between detection and prediction. Emerg. Microbes Infect. 2: e31. 2013</Citation>
</Reference>
<Reference>
<Citation>Dundon, W. G., A. Heidari, A. Fusaro, I. Monne, M. S. Beato, G. Cattoli, G. Koch, E. Starick, I. H. Brown, E. W. Aldous, F. X. Briand, G. Le Gall-Reculé, V. Jestin, P. H. Jørgensen, M. Berg, S. Zohari, G. Metreveli, M. Munir, K. Ståhl, E. Albina, S. Hammoumi, P. Gil, R. Servan de Almeida, K. Smietanka, K. Domanska-Blicharz, Z. Minta, S. Van Borm, T. van den Berg, A. Moreno Martin, I. Barbieri, and I. Capua. Genetic data from avian influenza and avian paramyxoviruses generated by the European network of excellence (EPIZONE) between 2006 and 2011—review and recommendations for surveillance. Vet. Microbiol. 154: 209–221. 2012</Citation>
</Reference>
<Reference>
<Citation>Elizalde, M., M. Aguero, D. Buitrago, M. Yuste, M. L. Arias, M. J. Munoz, D. Lelli, E. Perez-Ramirez, A. M. Moreno-Martin, and J. Fernandez-Pinero. Rapid molecular haemagglutinin subtyping of avian influenza isolates by specific real-time RT-PCR tests. J. Virol. Methods 196: 71–81. 2014</Citation>
</Reference>
<Reference>
<Citation>Erickson, A. K., P. R. Jesudhasan, M. J. Mayer, A. Narbad, S. E. Winter, and J. K. Pfeiffer. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host Microbe 23: 77–88.e5. 2018.</Citation>
</Reference>
<Reference>
<Citation>Fereidouni, S. R., E. Starick, C. Grund, A. Globig, T. C. Mettenleiter, M. Beer, and T. Harder. Rapid molecular subtyping by reverse transcription polymerase chain reaction of the neuraminidase gene of avian influenza A viruses. Vet. Microbiol. 135: 253–260. 2009</Citation>
</Reference>
<Reference>
<Citation>Friend, M., and J. C. Franson. Field manual of wildlife diseases: general field procedures and diseases of birds. Information and Technology Report 01. Madison, WI. 1999.</Citation>
</Reference>
<Reference>
<Citation>Gronesova, P., M. Ficova, A. Mizakova, P. Kabat, A. Trnka, and T. Betakova. Prevalence of avian influenza viruses,
<i>Borrelia garinii</i>
,
<i>Mycobacterium avium</i>
, and
<i>Mycobacterium avium</i>
subsp.
<i>paratuberculosis</i>
in waterfowl and terrestrial birds in Slovakia, 2006. Avian Pathol. 37: 537–543. 2008</Citation>
</Reference>
<Reference>
<Citation>Hanson, B. A., D. E. Swayne, D. A. Senne, D. S. Lobpries, J. Hurst, and D. E. Stallknecht. Avian influenza viruses and paramyxoviruses in wintering and resident ducks in Texas. J. Wildl. Dis. 41: 624–628. 2005</Citation>
</Reference>
<Reference>
<Citation>Hoffmann, B., D. Hoffmann, D. Henritzi, M. Beer, and T. C. Harder. Riems influenza a typing array (RITA): an RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses. Sci. Rep. 6: 27211. 2016</Citation>
</Reference>
<Reference>
<Citation>Hoffmann, E., J. Stech, Y. Guan, R. G. Webster, and D. R. Perez. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 146: 2275–2289. 2001</Citation>
</Reference>
<Reference>
<Citation>Hubálek, Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40: 639–59. 2004.</Citation>
</Reference>
<Reference>
<Citation>Jia, L., J. Xie, J. Zhao, D. Cao, Y. Liang, X. Hou, L. Wang, and Z. Li. Mechanisms of severe mortality-associated bacterial co-infections following influenza virus infection. Front. Cell. Infect. Microbiol. 7: 1–7. 2017</Citation>
</Reference>
<Reference>
<Citation>Jimenez-Clavero, M., M. Agüero, G. Rojo, and C. Gómez-Tejedor. A new fluorogenic real-time RT-PCR assay for detection of lineage 1 and lineage 2 West Nile viruses. J. Vet. Diag. Invest. 18: 459–462. 2006</Citation>
</Reference>
<Reference>
<Citation>Keawcharoen, J., D. van Riel, G. van Amerongen, T. Bestebroer, W. E. Beyer, R. van Lavieren, A. D. Osterhaus, R. A. Fouchier, and T. Kuiken. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 14: 600–607. 2008</Citation>
</Reference>
<Reference>
<Citation>Kim, L. M., D. L. Suarez, and C. L. Afonso. Detection of a broad range of class I and II Newcastle disease viruses using a multiplex real-time reverse transcription polymerase chain reaction assay. J. Vet. Diagn. Invest. 20: 414–425. 2008</Citation>
</Reference>
<Reference>
<Citation>Kishida, N., Y. Sakoda, M. Eto, Y. Sunaga, and H. Kida. Co-infection of
<i>Staphylococcus aureus</i>
or
<i>Haemophilus paragallinarum</i>
exacerbates H9N2 influenza A virus infection in chickens. Arch. Virol. 149: 2095–2104. 2004</Citation>
</Reference>
<Reference>
<Citation>Konicek, C., P. Vodrážka, P. Barták, Z. Knotek, C. Hess, K. Račka, M. Hess, and S. Troxler. Detection of zoonotic pathogens in wild birds in the cross-border region Austria–Czech Republic. J. Wildl. Dis. 52: 850–861. 2016.</Citation>
</Reference>
<Reference>
<Citation>Kramer, L. D., J. Li, and P.-Y. Shi. West Nile virus. Lancet Neurol. 6: 171–181. 2007</Citation>
</Reference>
<Reference>
<Citation>Lijtmaer, D. A., K. C. R. Kerr, M. Y. Stoeckle, and P. L. Tubaro. DNA Barcoding birds: from field collection to data analysis. In: DNA barcodes: methods and protocols. W. J. Kress and D. L. Erickson, eds. Humana Press, Totowa, NJ. pp. 127–152. 2012</Citation>
</Reference>
<Reference>
<Citation>Malkinson, M., C. Banet, Y. Weisman, S. Pokamunski, R. King, M. T. Drouet, and V. Deubel. Introduction of West Nile virus in the Middle East by migrating white storks. Emerg. Infect. Dis. 8: 392–397. 2002</Citation>
</Reference>
<Reference>
<Citation>Malorny, B., E. Paccassoni, P. Fach, A. Martin, R. Helmuth, and C. Bunge. Diagnostic real-time PCR for detection of
<i>Salmonella</i>
in food. Appl. Environ. Microbiol. 70: 7046–7052. 2004</Citation>
</Reference>
<Reference>
<Citation>Mundava, J., A. Caron, M. de Garine-Wichatitsky, C. Abolnik, P. Mundy, N. Gaidet, and F. Ishtiaq. The role of breeding phenology and aggregation of waterfowl on avian influenza dynamics in southern Africa. Ibis 158: 762–775. 2016</Citation>
</Reference>
<Reference>
<Citation>Najdenski, H., and S. Speck. Yersinia infections. In: Infectious diseases of wild mammals and birds in Europe. D. Gavier-Widén, J. P. Duff, and A. Meredith, eds. Blackwell Publishing, Oxford, England. pp. 293–302. 2012</Citation>
</Reference>
<Reference>
<Citation>Olsen, B., V. J. Munster, A. Wallensten, J. Waldenström, A. D. M. E. Osterhaus, and R. A. M. Fouchier. Global patterns of influenza A virus in wild birds. Science 312: 384–388. 2006</Citation>
</Reference>
<Reference>
<Citation>Pantin-Jackwood, M. J., M. Costa-Hurtado, P. J. Miller, C. L. Afonso, E. Spackman, D. R. Kapczynski, E. Shepherd, D. Smith, and D. E. Swayne. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses. Vet. Microbiol. 177: 7–17. 2015</Citation>
</Reference>
<Reference>
<Citation>Pearson, H. E., S. J. Lapidge, M. Hernández-Jover, and J.-A. L. M. L. Toribio. Pathogen presence in European starlings inhabiting commercial piggeries in South Australia. Avian Dis. 60: 430–436. 2016</Citation>
</Reference>
<Reference>
<Citation>Pedersen, K., D. R. Marks, D. M. Arsnoe, C. L. Afonso, S. N. Bevins, P. J. Miller, A. R. Randall, and T. J. Deliberto. Avian paramyxovirus serotype 1 (Newcastle disease virus), avian influenza virus, and
<i>Salmonella</i>
spp. in mute swans (
<i>Cygnus olor</i>
) in the Great Lakes region and Atlantic Coast of the United States. Avian Dis. 58: 129–136. 2014</Citation>
</Reference>
<Reference>
<Citation>Pérez-Ramírez, E., P. Acevedo, A. Allepuz, X. Gerrikagoitia, A. Alba, N. Busquets, S., Díaz-Sánchez V. Álvarez, F. X. Abad, M. Barral, N. Majó, and U. Höfle. Ecological factors driving avian influenza virus dynamics in Spanish wetland ecosystems. PLoS One 7: e46418. 2012</Citation>
</Reference>
<Reference>
<Citation>Reed, K. D., J. K. Meece, J. S. Henkel, and S. K. Shukla. Birds, migration and emerging zoonoses: West Nile Virus, Lyme Disease, Influenza A and enteropathogens. Clin. Med. Res. 1: 5–12. 2003</Citation>
</Reference>
<Reference>
<Citation>Risely, A., M. Klaassen, and B. J. Hoye. Migratory animals feel the cost of getting sick: a meta-analysis across species. J. Anim. Ecol. 87: 301–314. 2018</Citation>
</Reference>
<Reference>
<Citation>Risely, A., D. Waite, B. Ujvari, M. Klaassen, and B. Hoye. Gut microbiota of a long-distance migrant demonstrates resistance against environmental microbe incursions. Mol. Ecol. 26: 5842–5854. 2017</Citation>
</Reference>
<Reference>
<Citation>Rohani, P., R. Breban, D. E. Stallknecht, and J. M. Drake. Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proc. Natl. Acad. Sci. U. S. A. 106: 10365–10369. 2009</Citation>
</Reference>
<Reference>
<Citation>Di Sabatino, D., R. Bruno, F. Sauro, M. L. Danzetta, F. Cito, S. Iannetti, V. Narcisi, F. De Massis, and P. Calistri. Epidemiology of West Nile disease in Europe and in the Mediterranean Basin from 2009 to 2013. Biomed. Res. Int. 2014: 907852. 2014</Citation>
</Reference>
<Reference>
<Citation>Samy, A., and M. Naguib. Avian respiratory coinfection and impact on avian influenza pathogenicity in domestic poultry: field and experimental findings. Vet. Sci. 5: 23. 2018</Citation>
</Reference>
<Reference>
<Citation>Sevilla, I. A., E. Molina, N. Elguezabal, V. Pérez, J. M. Garrido, and R. A. Juste. Detection of mycobacteria,
<i>Mycobacterium avium</i>
subspecies, and
<i>Mycobacterium tuberculosis</i>
complex by a novel tetraplex real-time PCR assay. J. Clin. Microbiol. 53: 930–940. 2015</Citation>
</Reference>
<Reference>
<Citation>Sid, H., S. Hartmann, H. Petersen, M. Ryll, and S. Rautenschlein.
<i>Mycoplasma gallisepticum</i>
modifies the pathogenesis of influenza A virus in the avian tracheal epithelium. Int. J. Med. Microbiol. 306: 174–186. 2016</Citation>
</Reference>
<Reference>
<Citation>Spackman, E., D. A. Senne, T. J. Myers, L. L. Bulaga, L. P. Garber, M. L. Perdue, K. Lohman, L. T. Daum, and D. L. Suarez. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 40: 3256–3260. 2002</Citation>
</Reference>
<Reference>
<Citation>Tell, L. A., L. Woods, and R. L. Cromie. Mycobacteriosis in birds. Rev. Sci. Tech. Off. Int. Epiz. 20: 180–203. 2001</Citation>
</Reference>
<Reference>
<Citation>Thisted Lambertz, S., C. Nilsson, and S. Hallanvuo. TaqMan-based real-time PCR method for detection of
<i>Yersinia pseudotuberculosis</i>
in food. Appl. Environ. Microbiol. 74: 6465–6469. 2008</Citation>
</Reference>
<Reference>
<Citation>Thisted Lambertz, S., C. Nilsson, S. Hallanvuo, and M. Lindblad. Real-time PCR method for detection of pathogenic
<i>Yersinia enterocolitica</i>
in food. Appl. Environ. Microbiol. 74: 6060–6067. 2008</Citation>
</Reference>
<Reference>
<Citation>Tizard, I. Salmonellosis in wild birds. Semin. Avian Exot. Pet Med. 13: 50–66. 2004</Citation>
</Reference>
<Reference>
<Citation>Tolf, C., M. Wille, A. K. Haidar, A. Avril, S. Zohari, and J. Waldenstrom. Prevalence of avian paramyxovirus type 1 in mallards during autumn migration in the western Baltic Sea region. Virol. J. 10: 285. 2013</Citation>
</Reference>
<Reference>
<Citation>Tsukamoto, K., H. Ashizawa, K. Nakanishi, N. Kaji, K. Suzuki, M. Okamatsu, S. Yamaguchi, and M. Mase. Subtyping of H1 to H15 hemagglutinin genes of avian influenza virus by RT-PCR assay and molecular determination of the pathogenic potential. J. Clin. Microbiol. 46: 3048–3055. 2008</Citation>
</Reference>
<Reference>
<Citation>Umar, S., J. L. Guerin, and M. F. Ducatez. Low pathogenic avian influenza and coinfecting pathogens: a review of experimental infections in avian models. Avian Dis. 61: 3–15. 2017</Citation>
</Reference>
<Reference>
<Citation>Verhagen, J. H., and R. A. M. Fouchier. Ecology of avian viruses. In: Studies in viral ecology: animal host systems, vol. 2. V. C. Hurst and J. Christon, eds. Wiley-Blackwell, Hoboken, NJ. pp. 365–394. 2011.</Citation>
</Reference>
<Reference>
<Citation>Webster, R. G., W. J. Bean, O. T. Gorman, T. M. Chambers, and Y. Kawaoka. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56: 152–79. 1992</Citation>
</Reference>
<Reference>
<Citation>Wille, M., A. Avril, C. Tolf, A. Schager, S. Larsson, O. Borg, B. Olsen, and J. Waldenström. Temporal dynamics, diversity, and interplay in three components of the virodiversity of a Mallard population: influenza A virus, avian paramyxovirus and avian coronavirus. Infect. Genet. Evol. 29: 129–137. 2015</Citation>
</Reference>
<Reference>
<Citation>Wise, M. G., D. L. Suarez, B. S. Seal, J. C. Pedersen, D. A. Senne, D. J. King, D. R. Kapczynski, and E. Spackman. Development of a real-time reverse-transcription PCR for detection of Newcastle disease virus RNA in clinical samples. J. Clin. Microbiol. 42: 329–338. 2004</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
<li>États-Unis</li>
</country>
<region>
<li>Castille-La Manche</li>
<li>Pays basque</li>
</region>
</list>
<tree>
<country name="Espagne">
<region name="Pays basque">
<name sortKey="Torrontegi, Olalla" sort="Torrontegi, Olalla" uniqKey="Torrontegi O" first="Olalla" last="Torrontegi">Olalla Torrontegi</name>
</region>
<name sortKey="Alvarez, Vega" sort="Alvarez, Vega" uniqKey="Alvarez V" first="Vega" last="Alvarez">Vega Alvarez</name>
<name sortKey="Hofle, Ursula" sort="Hofle, Ursula" uniqKey="Hofle U" first="Ursula" last="Höfle">Ursula Höfle</name>
<name sortKey="Hofle, Ursula" sort="Hofle, Ursula" uniqKey="Hofle U" first="Ursula" last="Höfle">Ursula Höfle</name>
<name sortKey="Hurtado, Ana" sort="Hurtado, Ana" uniqKey="Hurtado A" first="Ana" last="Hurtado">Ana Hurtado</name>
<name sortKey="Sevilla, Iker A" sort="Sevilla, Iker A" uniqKey="Sevilla I" first="Iker A" last="Sevilla">Iker A. Sevilla</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Barral, Marta" sort="Barral, Marta" uniqKey="Barral M" first="Marta" last="Barral">Marta Barral</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/GrippeEspagneV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000025 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000025 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    GrippeEspagneV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31131569
   |texte=   Naturally Avian Influenza Virus-Infected Wild Birds Are More Likely to Test Positive for Mycobacterium spp. and Salmonella spp.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31131569" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeEspagneV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Sep 25 11:01:38 2020. Site generation: Sat Feb 13 17:38:04 2021